If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-100t-50=0
a = 1; b = -100; c = -50;
Δ = b2-4ac
Δ = -1002-4·1·(-50)
Δ = 10200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10200}=\sqrt{100*102}=\sqrt{100}*\sqrt{102}=10\sqrt{102}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-10\sqrt{102}}{2*1}=\frac{100-10\sqrt{102}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+10\sqrt{102}}{2*1}=\frac{100+10\sqrt{102}}{2} $
| 30=3*x | | 4z=360 | | -5=2(3-7x) | | 19=x/12+16 | | 12z-40=360 | | 16z-40=360 | | 199=9+10v | | 14x+5=4x | | 14x+5=8x | | r^2-20r+16=0 | | 8=-2n+4n | | 12z+50=180 | | F(x)=-0-7 | | r2-20r+16=0 | | F(x)=-3-7 | | F(x)=-5-7 | | 3(x+1)-5+3x=10 | | 10/p=11.696/16.202 | | 3x+(2x+10)=100 | | F(x)=-7-7 | | 7x+3(-1-7x)+4x=-23 | | -6x-9=4(5-x) | | 12z-40=180 | | 36.49=7g+3.73 | | 27=7-3(2x+5)-x | | 2b+3-5b=-2-2(1-b) | | 0.08x+(0.18)(3)=0.12(x+3) | | 1.36g-4=0.76 | | 12y=-2y+224 | | 2x=20=3x=5 | | 35x^2+3x-2=0 | | 8v=3v+15 |